{-# OPTIONS --universe-polymorphism #-}
module Data.Bool.Extras where
open import Data.Bool using (Bool; true; false; T; if_then_else_)
open import Data.Unit using (⊤)
open import Data.Sum
open import Function
open import Relation.Binary.Extras
open import Relation.Binary.Logical
open import Relation.Nullary
open import Relation.Nullary.Decidable
If_then_else_ : ∀ {ℓ} {A B : Set ℓ} (b : Bool) → A → B → if b then A else B
If_then_else_ true x _ = x
If_then_else_ false _ x = x
data ⟦Bool⟧ : (b₁ b₂ : Bool) → Set where
⟦true⟧ : ⟦Bool⟧ true true
⟦false⟧ : ⟦Bool⟧ false false
module ⟦Bool⟧-Props where
refl : Reflexive ⟦Bool⟧
refl {true} = ⟦true⟧
refl {false} = ⟦false⟧
sym : Symmetric ⟦Bool⟧
sym ⟦true⟧ = ⟦true⟧
sym ⟦false⟧ = ⟦false⟧
trans : Transitive ⟦Bool⟧
trans ⟦true⟧ = id
trans ⟦false⟧ = id
subst : ∀ {ℓ} → Substitutive ⟦Bool⟧ ℓ
subst _ ⟦true⟧ = id
subst _ ⟦false⟧ = id
_≟_ : Decidable ⟦Bool⟧
true ≟ true = yes ⟦true⟧
false ≟ false = yes ⟦false⟧
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence ⟦Bool⟧
isEquivalence = record { refl = refl; sym = sym; trans = trans }
isDecEquivalence : IsDecEquivalence ⟦Bool⟧
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence }
⟦if⟨_⟩_then_else_⟧ : ∀ {a₁ a₂ aᵣ} → (∀⟨ Aᵣ ∶ ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_
⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧ xᵣ _ = xᵣ
⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ
⟦If⟨_,_⟩_then_else_⟧ : ∀ {ℓ₁ ℓ₂ ℓᵣ} →
(∀⟨ Aᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ ∶ ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧
⟨ bᵣ ∶ ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _ ⟩ bᵣ then Aᵣ else Bᵣ ⟧)
If_then_else_ If_then_else_
⟦If⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧ xᵣ _ = xᵣ
⟦If⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ
_==_ : (x y : Bool) → Bool
true == true = true
true == false = false
false == true = false
false == false = true
module == where
_≈_ : (x y : Bool) → Set
x ≈ y = T (x == y)
refl : Reflexive _≈_
refl {true} = _
refl {false} = _
subst : ∀ {ℓ} → Substitutive _≈_ ℓ
subst _ {true} {true} _ = id
subst _ {false} {false} _ = id
subst _ {true} {false} ()
subst _ {false} {true} ()
sym : Symmetric _≈_
sym {x} {y} eq = subst (λ y → y ≈ x) {x} {y} eq (refl {x})
trans : Transitive _≈_
trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y
_≟_ : Decidable _≈_
true ≟ true = yes _
false ≟ false = yes _
true ≟ false = no (λ())
false ≟ true = no (λ())
isEquivalence : IsEquivalence _≈_
isEquivalence = record { refl = λ {x} → refl {x}
; sym = λ {x} {y} → sym {x} {y}
; trans = λ {x} {y} {z} → trans {x} {y} {z} }
isDecEquivalence : IsDecEquivalence _≈_
isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }
setoid : Setoid _ _
setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence }
decSetoid : DecSetoid _ _
decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence }
module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid
open Data.Bool public
⟦true⟧′ : ∀ {b} → T b → ⟦Bool⟧ true b
⟦true⟧′ {true} _ = ⟦true⟧
⟦true⟧′ {false} ()
⟦false⟧′ : ∀ {b} → T (not b) → ⟦Bool⟧ false b
⟦false⟧′ {true} ()
⟦false⟧′ {false} _ = ⟦false⟧
T∧ : ∀ {b₁ b₂} → T b₁ → T b₂ → T (b₁ ∧ b₂)
T∧ {true} {true} _ _ = _
T∧ {false} {_} () _
T∧ {true} {false} _ ()
T∧₁ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₁
T∧₁ {true} {true} _ = _
T∧₁ {false} {_} ()
T∧₁ {true} {false} ()
T∧₂ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) → T b₂
T∧₂ {true} {true} _ = _
T∧₂ {false} {_} ()
T∧₂ {true} {false} ()
T∨'⊎ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) → T b₁ ⊎ T b₂
T∨'⊎ {true} _ = inj₁ _
T∨'⊎ {false} {true} _ = inj₂ _
T∨'⊎ {false} {false} ()
T∨₁ : ∀ {b₁ b₂} → T b₁ → T (b₁ ∨ b₂)
T∨₁ {true} _ = _
T∨₁ {false} {true} _ = _
T∨₁ {false} {false} ()
T∨₂ : ∀ {b₁ b₂} → T b₂ → T (b₁ ∨ b₂)
T∨₂ {true} _ = _
T∨₂ {false} {true} _ = _
T∨₂ {false} {false} ()
T'not'¬ : ∀ {b} → T (not b) → ¬ (T b)
T'not'¬ {false} _ = λ()
T'not'¬ {true} ()
T'¬'not : ∀ {b} → ¬ (T b) → T (not b)
T'¬'not {true} f = f _
T'¬'not {false} _ = _
Tdec : ∀ b → Dec (T b)
Tdec true = yes _
Tdec false = no λ()